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LElTER TO THE EDITOR 

Renormalisation of the long-range ‘true’ self-avoiding walk 

Luca Pelitit and Zhang Yi-ChengS 
t Dipartimento di Fisica, Universiti ‘La Sapienza’, Piazzale Aldo Moro 2, 1-00185 Roma, 
Italy and GNSM-CNR, Uniti di Roma, Italy 
$ Physics Department, Brookhaven National Laboratory, Upton, New York 11973, USA 

Received 17 June 1985 

Abstract. We show that the ‘true’ self-avoiding walk with long-range interactions leads to 
a renormalisable field theory. We compute the characteristic exponent of the gyration 
radius up to first order in the difference between the upper critical dimension and space 
dimensionality, and compare,it with the estimates based on Flory-like arguments. 

The ‘true’ self-avoiding walk (TSAW) introduced by Amit et a1 (1983) is a convenient 
toy model of aggregation processes. While retaining the characteristic memory effects 
of aggregation, it is very simple to simulate and has a non-trivial behaviour at low 
dimensionality. On the other hand, it is easy to analyse it by field theoretical perturba- 
tion expansions or by the analogue of high-temperature series. Therefore, although it 
does not probably describe any real physical process (but cf Bulgadaev and Obukhov 
1983), it has been treated by several methods as an arena where new techniques and 
concepts could be easily tested (for a review, see Peliti and Pietronero 1985). 

One of the authors (Zhang 1985) has recently introduced a generalisation of the 
TSAW where the repulsion acting on the walker from all sites it has previously visited 
has long range, decaying with the distance r as l r l - ( d - 2 u ) .  A Flory argument (in the 
spirit of Pietronero (1983)) yielded as a result that the upper critical dimensionality 
d ,  (above which the walker undergoes Brownian motion) is given for such a model by 

d C = 2 + 2 a  (1) 

and that the exponent v which describes the dependence R cc N u  of the radius of 
gyration as a function of the number of steps is given by 

(2) 

This gives in particular d,  = 4 and v = 2/d for Coulomb interactions ( (Y = 1). Flory 
arguments are known to give rather good estimates of exponents for self-repelling 
chains with short-range interactions (cf de Gennes 1979). The situation is not so clear 
in the presence of long-range interactions, such as in polyelectrolytes. Similarly, 
whereas Pietronero’s argument probably yields the correct exponent for the one- 
dimensional TSAW, it is not obvious whether it should work with the same success with 
long-range interactions. Monte Carlo simulations (Zhang 1985) show nevertheless the 
Flory-Pietronero-like estimates to be exact within 10%. 

We apply here field theoretical renormalisation group methods to the same problem 
and find the model to correspond to a renormalisable field theory. We obtain confirma- 
tion of the value of d,  (equation (1)) .  The exponents are not regular as a function of 

V F  = 2/( d + 2 - 2a) .  
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a around a = 0. To first order in E = d,  - d, the exponent v has the expansion: 

V = ; + f & ,  (3 )  

V F  = ; + 4s. (4) 

which does not agree with the first-order expansion of (2): 

We have in fact considered a slightly more general model, which also encompasses 
the random walk in a random environment, for a case in which the correlations of the 
quenched randomness decay as I r ( - ( d - 2 0 )  . The upper critical dimension is correctly 
given by (1). The first order in the E expansion of v is given by 

a v = I + -  
2 ( l + a )  E .  

2 

The model is defined as follows. We consider a walker whose position R( t )  evolves 
according to the equation: 

where q( t )  is a Gaussian white noise process of average zero and of correlation function 

( 7 7 , ( t ) 7 7 p ( t ’ ) )  = 2 m , 6 ( t -  0.  (7 )  

The potential 4 ( r ,  t )  is expressed as a function of the density p ( r ,  t )  of points which 
have been visited by the walker up to time t by 

4 ( r ,  t )  = 1 ddr’ K ( r -  r ’ ) p ( r ’ ,  t )  (8) 

and the kernel K ( r )  is given by 

The integral is regularised by a suitable ultraviolet cutoff. Using standard arguments 
(Grasberger and Scheunert 1980) one formulates the problem as a field theory defined 
by the action 

H = Ho+ HI, (10) 

where, up to irrelevant terms, one has: 

ddrq(r ,  t ) [ -d t , b /a t+DV2+(r ,  r)], (11) 

x Ior dt‘ $( t’, t’)t,b( r‘, t ’ )  . 1 (12) 

One may easily read off in equations (11) and (12) the dimension of the coupling 
constant and therefore the upper critical dimension. Feynman rules for the perturbative 
expansion of the Fourier (space) and Laplace (time) transform of the end point 
probability distribution are easily obtained. The walk is represented by a full, directed 
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line, in which a wavenumber p flows. The interactions are represented by broken lines, 
joining points of the solid line and carrying wavevector q in the direction opposite to 
the walk. Wavevector conservation is assumed at each vertex. Each segment of the 
full line represents a factor ( p  + Dp2)-', where p is the Laplace transform parameter 
and p is the wavenumber which flows in that segment. We define a general interaction 
vertex as in figure 1. The point A is assumed to come earlier than point B if one moves 
along the walk. The general interaction contribution will be of the form: 

Y ( P , 4 9 P l ) = [ g l ( P l  * q ) + g 2 ( P l  * ( P l + q ) ) + g 3 ( P 1  *P)1 /41-2a .  (13) 

Figure 1. The basic interaction vertex. Point A is assumed to come earlier than point B 
along the directed line. 

For our model, only g ,  is different frm zero. If we were instead modelling a random 
walk in a random environment ( RRW) where correlations of the quenched velocity 
field are proportional to K ( r ) ,  we would obtain 

g , =  g3 = - g  ( g > O )  g2 = 0. (14) 

Renormalisation of this field theory is fairly straightforward. One notices that the only 
primitively divergent graphs must contain no more interaction (broken) lines than 
loops. This ensures that the renormalised vertex still contains a \ql-2a factor, where q 
is the transferred wavevector. Some diagrams that contribute to the vertex renormalisa- 
tion in the short-range TSAW do not contribute here. Therefore the exponents turn out 
to be discontinuous as a + 0. One introduces a wavefunction renormalisation constant 
Z and dimensionless renormalised coupling constants U, ( i  = 1,2,3) in a way analogous 
to Obukhov and Peliti (1983). One then computes the corresponding exponent function 
7 and Wilson functions Wi ( i  = 1, 2 ,  3) obtaining as a result: 

W , = -  U1 U 2  alnK 

5+4a u2u3 uIuJ-- -~ 
2 ( l + a )  2 ( 1 + a )  

u2u3 

U I U 3  1 + 2 a  
l + a  l S a  
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Here K is the renormalisation wavenumber. One notices that, contrary to the case of 
the short-range TSAW, no U*, u3 couplings are generated by the renormalisation if they 
are zero at  the beginning. The relevant fixed points to first order in E are given by 

TSAW: U t  = f (  1 + ff ) E  u ; = u ; * = o  (19) 

l + f f  
1 +2ff 

RRW: UT = U: = -- E U; = 0. 

The results (equations (3)  and (5)) follow if one considers that the exponent v is 
connected to 7 via a scaling law of the form y / v = 2 - 7 ,  where the susceptibility 
exponent y is identically equal to 1 in view of probability conservation. 

We have shown in conclusion the tractability of the problem of the long-range 
TSAW by the traditional methods of renormalised field theory. While the exponents 
so obtained disagree with estimates based on Flory-like approaches, they are con- 
sistently larger, as in previous instances. Nevertheless it would be interesting to perform 
Monte Carlo simulations for such a model with a suitably chosen a such that, say, 
two dimensions were just below the upper critical dimension, to check whether the 
striking success of Flory arguments persists even in a domain where one would 
reasonably rely on E expansions. 

This work was done while Zhang Yi-Cheng was visiting the Department of Physics, 
Universiti ‘La Sapienza’, Rome, which he warmly thanks for hospitality. He also 
thanks Y Shapir for useful discussions. 
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